Не отрываясь от земли...

управляющая компания

Анализ риска досрочного погашения российских ИЦБ

Белов Иван

Москва, 2014

Риск досрочного погашения ИЦБ условно зависит от двух показателей по пулу ипотечных кредитов:

CPR (Conditional Prepayment Rate, % годовых)

CPR — приведенный к годовым процент переплаты (досрочного погашения) по ипотечному кредиту сверх плановых платежей по основному долгу

CPR=1-(1-SMM)^12, где SMM (Single Monthly Mortality Rate) – месячная ставка переплаты

Пример:

Кредит — 100 000 руб, аннуитет состоит из % платежа - 10 000 и планового платежа по ОД — 500, заемщик заплатил 12 000 за первый месяц

 $SMM = (12\ 000 - 10\ 000 - 500)/(100\ 000\ -500) = 1.51\%$

CPR= 1-(1-1.51%)^12=16.6%

Досрочные погашения по кредитам перенаправляются на амортизацию старшего транша по облигациям

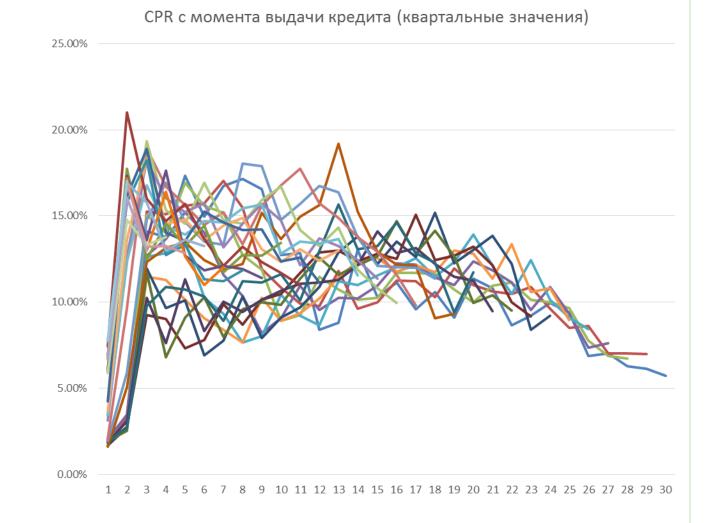
CDR (Conditional Default Rate, % годовых)

CDR - приведенный к годовым процент просроченных кредитов (90+)* в ипотечном пуле

CDR= 1-(1-(текущий объем дефолтных кредитов по ОД/(Оставшийся объем ОД+досрочные погашения в периоде+Дефолты)^12, если период - месяц

У банка-оригинатора есть колл-опцион выкупить дефолтные кредиты обратно на баланс банка и денежные ср-ва на сумму ОД выкупленных кредитов пойдут на амортизацию старшего транша

* Условия наступления дефолта прописаны в проспекте эмиссии облигаций, например для пула кредитов ИА Открытие условие дефолта наступает после 120 дней непрерывной просроченной задолженности

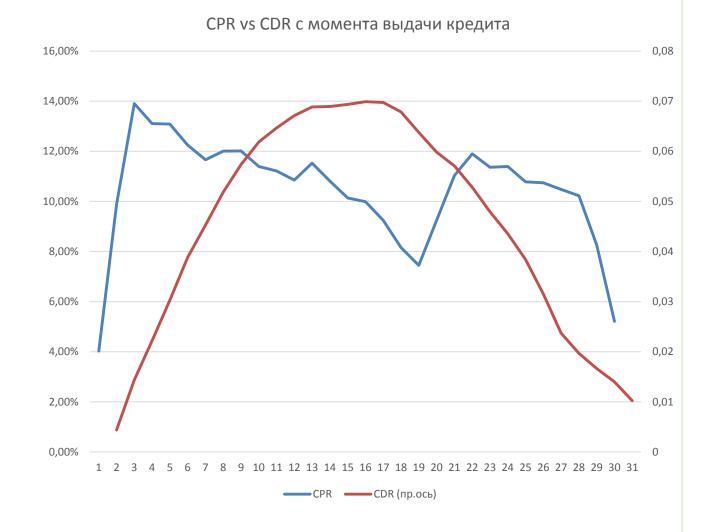

Эффект выгорания

Усредненные значения CPR ипотечных кредитов в первые кварталы составляют 14-15%

И падают до 6-7% по истечению 7-8 лет с момента выдачи кредита

На графике изображены CPR пула кредитов, которые были выданы в определенном квартале и успели прожить n-кварталов с момента выдачи (где n=1,2...30)

Поквартальные данные с 1 кв. 2006 года по 3 кв. 2013 года


CPR & CDR

Пик дефолтов по ипотечным кредитам наступает на 3-4 годы с момента выдачи кредитов – около 7%

В период 4-5 лет с момента выдачи кредита наблюдается замедление CPR до 7%

Поквартальные данные с 1 кв. 2006 года по 3 кв. 2013 года

Макроиндикаторы для исследования

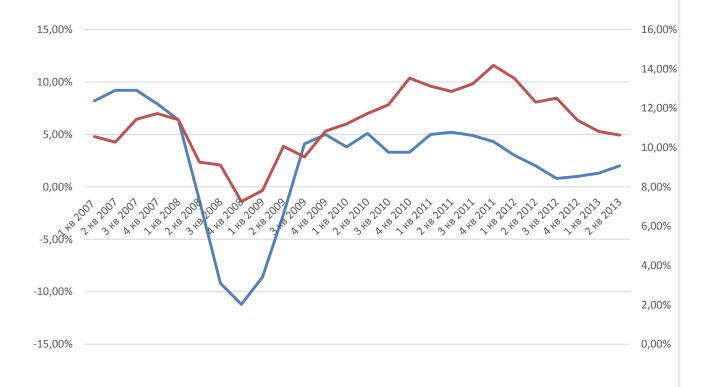
- Темпы роста Реального ВВП (г/г%) RUDPRYOY Index* (GDP)**
- Уровень безработицы (%) RUUER Index* (UnEmp)**
- Темпы роста реальной месячной з/п (г/г%) RUMEREAL Index* (RW)**
- Потребительская инфляция (г/г%) RUCPIYOY Index* (CPI)**
- Темпы роста занятости (г/г%) RUEMYOY Index* (Emp)**
- Темпы роста реал располаг дохода (г/г%) RUMERDIY Index* (RealInc)**
- Темпы роста цен на недвиж-ть в Москве RURRPRC Index* (MscProp)**
- Темпы роста потреб расходов домохозяйств(г/г%) RUGRHOUY* (HE)**

^{*} Название указанных индексов в Блумберге

^{**} Название показателей в модели

ТРАНСФИНГРУП управляющая компания

CPR vs Real GDP


CPR vs Real GDP(+2Q)

CPR - опережающий индикатор реального ВВП!!!

Максимальная корреляция получается при сдвиге Реал ВВП на два квартала вперед

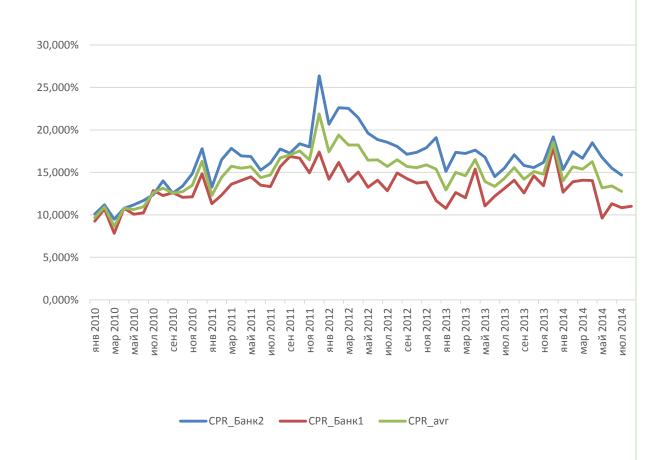
К-т корреляции (CPR;RealGDP(+2Q))=62,2%

Поквартальные данные с 1 кв 2007 года по 2 кв 2013 года

Real GDP —— CPR (пр.ось)

ТРАНСФИНГРУП управляющая компания

Данные по CPR


Помесячные значения CPR

В исследовании были использованы усредненные помесячные значения CPR двух банков за период с января 2010 года по июль 2014 года — всего 55 значений

Далее в исследовании будут использоваться средние значения CPR_Avr, как рroxy рынка

Стоит признать высокую корреляцию между данными двух разных банков:

к-т корреляции (СРК_Б1;СРК_Б2)=74%

Матрица попарных корреляций: CPR

На первой стадии исследования были выявлены максимальные значения к-тов корреляции между макрофакторами и CPR_Avr с учетом лаговых значений (в скобках указан временной лаг — кол-во месяцев)

Для включения в модель были отобраны факторы с к-том корреляции выше 50%

Построена таблица попарных корреляций между факторами будущей модели, чтобы оценить потенциальный риск мультиколлинеарности – подозрение вызывают значения отмеченные цветом

	CPR_Avr	RW(0)	RealIn(-3)	Emp(-10)	UnEmp(-3)	MscProp(-6)
CPR_Avr	100%					
RW(0)	55%	100%				
RealIn(-3)	-50%	-7%	100%			
Emp(-10)	78%	38%	-41%	100%		
UnEmp(-3)	-49%	-13%	31%	-61%	100%	
MscProp(-6)	78%	24%	-52%	86%	-57%	100%

С помощью эконометрического пакета Eviews была построена модель с отобранными ранее факторами

Согласно высокому значению F-статистики модель получилась значима (0% уровень значимости)

Скорректированный R2 показывает, что CPR на 75% объясняется выбранными факторами

Но сами факторы не значимы для следующих показателей:

-Emp_10

-UnEmp_3

Dependent Variable: CPR Method: Least Squares Date: 10/05/14 Time: 17:16

Sample: 155

Variable	Coefficient	Std. Error t-Statistic	Prob.
RWO	0.313319	0.064495 4.85806	0
REALINC_3	-0.099688	0.048411 -2.059219	0.0448
EMP_10	0.295307	0.255908 1.153955	0.2541
UNEMP_3	-0.101632	0.197192 -0.515395	0.6086
MSCPROP_6	0.072532	0.024244 2.991733	0.0043
С	13.99468	1.278821 10.94342	0
R-squared	0.773626	Mean dependent var	14.82217
Adjusted R-squared	0.750527	S.D. dependent var	2.460271
S.E. of regression	1.228839	Akaike info criterion	3.352686
Sum squared resid	73.99223	Schwarz criterion	3.571668
Log likelihood	-86.19886	Hannan-Quinn criter.	3.437368
F-statistic	33.49122	Durbin-Watson stat	2.107631
Prob(F-statistic)	0		

MscProp_6 vs RealInc_3+Emp_10

Модель CPR: Вариант 4

Dependent Variable: CPR Method: Least Squares

Date: 10/05/14 Time: 17:19

Sample: 155

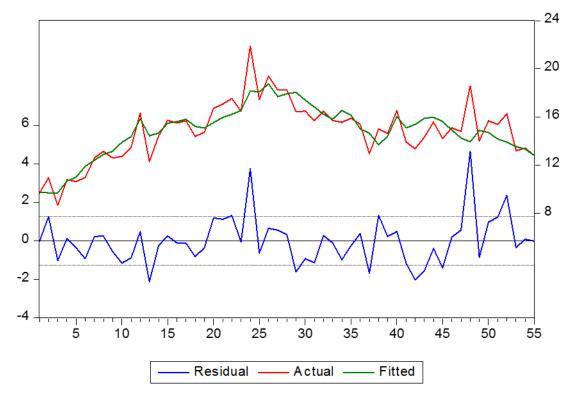
Prob(F-statistic)

Included observations: 55

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RWO	0.332164	0.061607	5.391634 0
MSCPROP_6	0.115226	0.012186	9.455734 0
С	12.92169	0.364567	35.44389 0
R-squared	0.745071	Mean dependent var	14.82217
Adjusted R-squared	0.735266	S.D. dependent var	2.460271
S.E. of regression	1.265866	Akaike info criterion	3.362391
Sum squared resid	83.32566	Schwarz criterion	3.471882
Log likelihood	-89.46576	Hannan-Quinn criter.	3.404732
F-statistic	75.98924	Durbin-Watson stat	1.860628

Модель CPR: Вариант 6

Dependent Variable: CPR Method: Least Squares Date: 10/05/14 Time:


17:22

Sample: 155


Variable	Coefficient S	Std. Error t	-Statistic Prob.
RWO	0.278609	0.067708	4.114851 0.0001
REALINC_3	-0.152385	0.048479 -	3.143338 0.0028
EMP_10	0.941142	0.149074	6.313256 0
С	13.6666	0.413789	33.02793 0
R-squared	0.729885	Mean dependent var	14.82217
Adjusted R-squared	0.713996	S.D. dependent var	2.460271
S.E. of regression	1.315737	Akaike info criterion	3.456618
Sum squared resid	88.28936	Schwarz criterion	3.602606
Log likelihood	-91.057	Hannan-Quinn criter.	3.513073
F-statistic	45.93617	Durbin-Watson stat	2.040742
Prob(F-statistic)	0		

Модель CPR: Вариант 6

Выбираем Вариант 6

- Мы получили две модели с сопоставимыми параметрами (разброс остатков CPR не превышает +/-2%)
- Несмотря на то, что банки активно оперируют в Московском регионе и явно прослеживается зависимость CPR от годовых темпов роста ст-ти недвижимости в Москве, принимаем решение ссылаться на более обобщенные факторы, чтобы не иметь привязки к географическому критерию при анализе пула кредитов, выданных в других регионах
- CPR=0,28*RW0-0,15*RealInc_3+0,94*Emp_10+13,67

Матрица попарных корреляций: CDR

В начале исследования были выявлены максимальные значения к-тов корреляции между макрофакторами и CDR с учетом лаговых значений (в скобках указан временной лаг – кол-во кварталов)

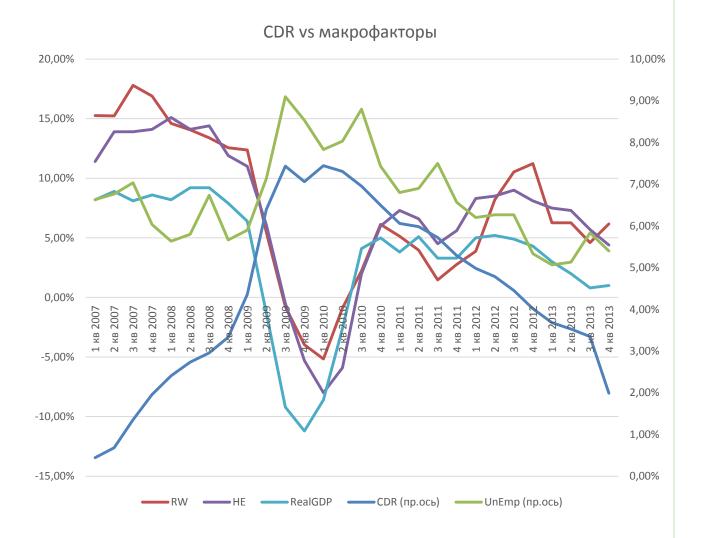
Для включения в модель были отобраны факторы с к-том корреляции выше 50%

Построена таблица попарных корреляций между факторами будущей модели, чтобы оценить потенциальный риск мультиколлинеарности – подозрение вызывают значения отмеченные цветом

Все выбранные факторы имеют очень высокие к-ты попарных корреляций!!!

Высок риск получения завышенных параметров регрессионной модели

	CDR	RW(-2)	UnEmp(-2)	HE(-2)	GDP(-2)
CDR	100%				
RW(-2)	-86%	100%			
UnEmp(-2)	65%	-57%	100%		
HE(-2)	-79%	93%	-63%	100%	
GDP(-2)	-70%	86%	-56%	91%	100%


ТРАНСФИНГРУП управляющая компания

Модель CDR Банка 1

Для модели CDR были выбраны факторы с максимальными к-тами корреляции

Опережающими индикаторами CDR являются все указанные параметры, сдвинутые на 2 квартала назад

Поквартальные данные с 1 кв 2007 по 4 кв 2013 – всего 28 значений

В целом модель значима

Скорректированный R2 показывает, что CDR на 75% объясняется выбранными факторами

Но сами факторы незначимы для следующих показателей:

-HE_2

-GDP_2

-С - константа

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 22:48

Sample: 128

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RW_2	-0.317567	0.089666	-3.541672 0.0017
UNEMP_2	0.541862	0.240422	2.253794 0.034
HE_2	0.04778	0.116266	0.410957 0.6849
GDP_2	0.05699	0.087346	0.652459 0.5206
С	0.026003	0.018254	1.424553 0.1677
R-squared	0.78367	Mean dependent var	0.043979
Adjusted R-squared	0.746048	S.D. dependent var	0.021107
S.E. of regression	0.010637	Akaike info criterion	-6.088581
Sum squared resid	0.002602	Schwarz criterion	-5.850688
Log likelihood	90.24014	Hannan-Quinn criter.	-6.015855
F-statistic	20.82981	Durbin-Watson stat	0.644572
Prob(F-statistic)	0		

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 22:48

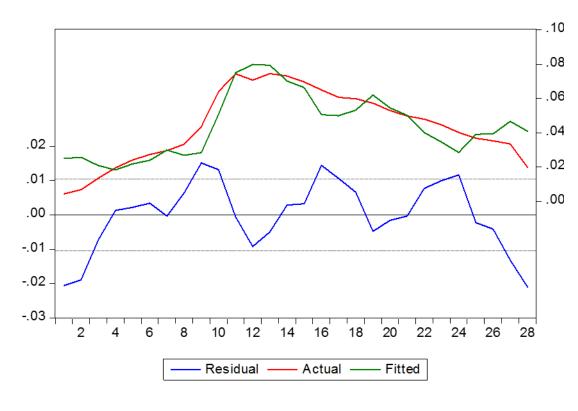
Sample: 128

Included observations: 28

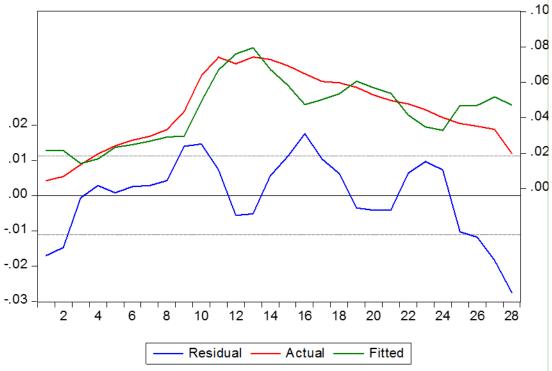
Variable	Coefficient S	Std. Error t-Statisti	c Prob.
RW_2	-0.238547	0.038797 -6.1486	450
UNEMP_2	0.471616	0.224848 2.0974	91 <mark>0.0462</mark>
С	0.030119	0.016871 1.7852	93 <mark>0.0864</mark>
R-squared	0.771521	Mean dependent var	0.043979
Adjusted R-squared	0.753243	S.D. dependent var	0.021107
S.E. of regression	0.010485	Akaike info criterion	-6.176797
Sum squared resid	0.002748	Schwarz criterion	-6.034061
Log likelihood	89.47516	Hannan-Quinn criter.	-6.133161
F-statistic	42.20964	Durbin-Watson stat	0.512205
Prob(F-statistic)	0		

Модель CDR Банка 1: Вариант 4

Dependent Variable: CDR Method: Least Squares


Date: 10/05/14 Time: 22:49

Sample: 128


Variable	Coefficient	Std. Error	t-Statistic	Prob.
RW_2	-0.284987	0.033877	-8.412318	0
С	0.064916	0.003261	19.90723	0
R-squared	0.731314	Mean dependent var		0.043979
Adjusted R-squared	0.72098	S.D. dependent var		0.021107
S.E. of regression	0.011149	Akaike info criterion		-6.086125
Sum squared resid	0.003232	Schwarz criterion		-5.990968
Log likelihood	87.20575	Hannan-Quinn criter.		-6.057035
F-statistic	70.76709	Durbin-Watson stat		0.448188
Prob(F-statistic)	C			

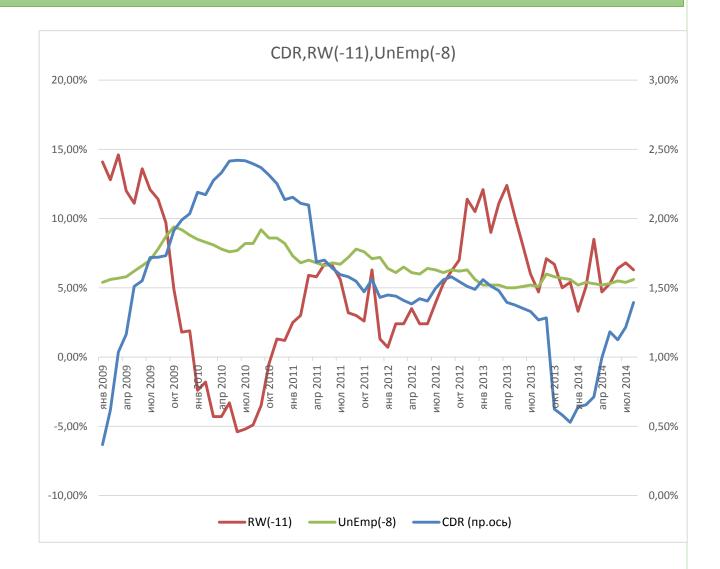
Модель CDR Банка 1: Вариант 4

Выбираем Вариант 2

- Объясняющая способность модели Вариант 2 незначительно выше
- Но обе модели имеют положительную автокорреляцию (DW<2) случайных ошибок, что приводит к ухудшению качества МНК-оценок параметров регрессии, а также к завышению тестовых статистик, по которым проверяется качество модели
- Попробуем построить регрессионную модель зависимости CDR от указанных факторов, но уже на ежемесячной основе по данным другого банка за период с января 2009 года по август 2014 года

CDR банка 2

Анализ ежемесячных данных по уровню дефолтов банка 2 в период с января 2009 по август 2014 — всего 68 значений


Максимальные к-ты корреляции получились:

для фактора RW со сдвигом на 11 мес назад – Corr(CDR;RW(-11))=61%

Для фактора UnEmp со сдвигом на 8 мес – Corr(CDR;UnEmp(-8))=77%

Corr(RW(-11);UnEmp(-8))=60%

Высокий к-т корреляции объясняющих факторов – риск завышения параметров регрессии!

RW_11+UnEmp_8 vs UnEmp_8

Модель CDR Банка 2: Вариант 2

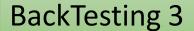
Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 18:04

Sample: 168

Included observations: 68

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RW_11	-0.023553	0.009573	-2.46042 0.0165
UMEMP_8	0.26215	0.038873	6.743704 0
С	-0.0007	0.002919	-0.239844 0.8112
R-squared	0.630655	Mean dependent var	0.015518
Adjusted R-squared	0.619291	S.D. dependent var	0.005145
S.E. of regression	0.003174	Akaike info criterion	-8.624219
Sum squared resid	0.000655	Schwarz criterion	-8.5263
Log likelihood	296.2234	Hannan-Quinn criter.	-8.58542
F-statistic	55.49368	Durbin-Watson stat	0.297757
Prob(F-statistic)	0		


Модель CDR Банка 2: Вариант 4

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 18:05

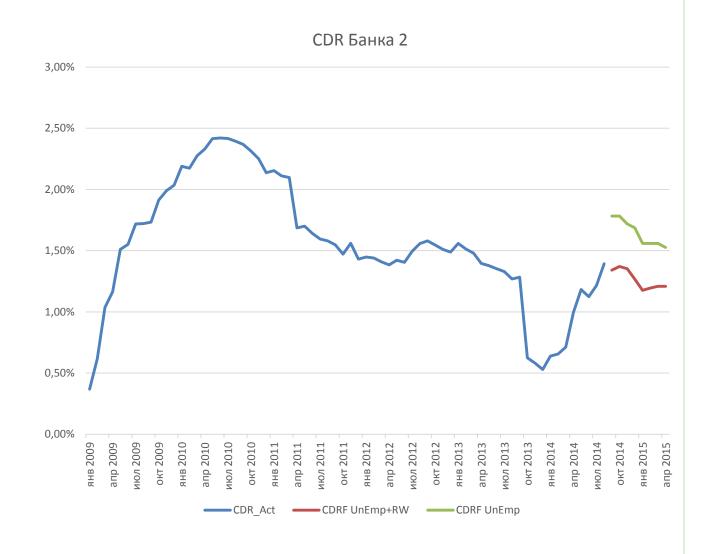
Sample: 168

Coefficient	Std. Error	t-Statistic	Prob.
0.319301	0.032342	9.872706	0
-0.005677	0.002184	-2.599867	0.0115
0.506257	Moan dependent var		0.015518
	•		0.015518
0.59014	S.D. dependent var		0.005145
0.003294	Akaike info criterion		-8.564583
0.000716	Schwarz criterion		-8.499303
293.1958	Hannan-Quinn criter.		-8.538717
97.47032	Durbin-Watson stat		0.294338
0	1		
	0.319301 -0.005677 0.596257 0.59014 0.003294 0.000716 293.1958 97.47032	0.319301 0.032342 -0.005677 0.002184 0.596257 Mean dependent var 0.59014 S.D. dependent var 0.003294 Akaike info criterion 0.000716 Schwarz criterion 293.1958 Hannan-Quinn criter.	0.319301 0.032342 9.872706 -0.005677 0.002184 -2.599867 0.596257 Mean dependent var 0.59014 S.D. dependent var 0.003294 Akaike info criterion 0.000716 Schwarz criterion 293.1958 Hannan-Quinn criter. 97.47032 Durbin-Watson stat

Модель CDR банка 2: Вариант 2

Прогнозирование CDR на ближайшие 8 мес

Поскольку мы выявили зависимость CDR от лаговых значений RW (-11); UnEmp(-8), у нас есть возможность спрогнозировать будущий CDR согласно построенным моделям:


Вариант 1:

CDR=-0,023553*RW_11+0,26215*UnEmp_8

Вариант 2:

CDR=-0.005677+0.319301*UnEmp_8

Разница между Вариантами 1и2 0,4-0,3 пп

Выводы

- <u>Эффект выгорания</u>: исторические данные показывают, что CPR уменьшается с увеличением срока жизни кредита
- <u>CPR опережающий индикатор реального ВВП</u>: максимальная корреляция наблюдается при сдвиге реал ВВП на полгода вперед корреляция (CPR;RealGDP(+2Q))=62,2%
- <u>Прогноз</u>: зависимость параметров CPR и CDR от лаговых значений макрофакторов дает возможность прогнозировать ближайшие будущие значения этих параметров с учетом текущей конъюнктуры макроситуации в стране

Вызовы

- Банкам следует в публичном доступе раскрывать данные по CPR и CDR: наличие помесячных данных CPR и CDR с 2006 года до текущего момента позволит увидеть более качественную картину в целом по рынку
- Анализ «снизу-вверх»: следующий этап исследования микро-подход к анализу досрочного погашения ипотечных кредитов, который заключается в анализе показателей самих кредитов и их влияние на CPR (фактор выгорания, фактор выдержанности и тд).
- Поиск новых факторов: вполне вероятно, модель может улучшить свою объясняющую способность с включением новых количественных и качественных (Дамми-переменные) показателей после микроанализа.

Приложение 1

Исключаем из модели наиболее незначимый фактор – UnEmp_3

Скорректированный R2 по прежнему высокий – 75%

В целом модель значима

Показатель Emp_10 не значим на 10% уровне значимости (вер-ть 17%)

Показатель RealInc_3 значим на 5% уровне значимости

Dependent Variable: CPR
Method: Least Squares

Date: 10/05/14 Time: 17:17

Sample: 155

Variable	Coefficient	Std. Error	t-Statistic Prob.
RWO	0.309405	0.063574	4.866851 0
REALINC_3	-0.100899	0.047997	-2.102179 0.0406
EMP_10	0.336435	0.241356	1.393937 0.1695
MSCPROP_6	0.073377	0.02401	3.056069 0.0036
С	13.36845	0.395824	33.77375 0
R-squared	0.772399	Mean dependent var	14.82217
Adjusted R-squared	0.754191	S.D. dependent var	2.460271
S.E. of regression	1.219781	Akaike info criterion	3.321729
Sum squared resid	74.39334	Schwarz criterion	3.504213
Log likelihood	-86.34753	Hannan-Quinn criter.	3.392297
F-statistic	42.42066	Durbin-Watson stat	2.11169
Prob(F-statistic)	0		

Приложение 2

Исключаем из модели наиболее незначимый фактор – Emp_10

Скорректированный R2 по прежнему высокий – 75%

В целом модель значима

Показатель RealInc_3 не значим на 5% уровне значимости (вер-ть 5,12%), но мы можем его принять на 10% уровне значимости

Dependent Variable: CPR Method: Least Squares

Date: 10/05/14 Time: 17:18

Sample: 155

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RWO	0.340577	0.060059	5.6707380
REALINC_3	-0.096508	0.048335	-1.996663 0.0512
MSCPROP_6	0.100815	0.013875	7.266013 0
С	13.22916	0.386529	34.22554 0
R-squared	0.763554	Mean dependent var	14.82217
Adjusted R-squared	0.749646	S.D. dependent var	2.460271
S.E. of regression	1.231008	Akaike info criterion	3.32349
Sum squared resid	77.28436	Schwarz criterion	3.469478
Log likelihood	-87.39597	Hannan-Quinn criter.	3.379945
F-statistic	54.89805	Durbin-Watson stat	2.002391
Prob(F-statistic)	0		

Приложение 3

Исключаем из модели последний незначимый фактор – RealInc_3

Скорректированный R2 по прежнему высокий – 74%

В целом модель значима

У нас нет оснований не принимать указанные объясняющие факторы

Получаем модель

CPR= 0.332*RW0+0.115*MscProp_6+12.922

Method: Least Squares

Date: 10/05/14 Time: 17:19

Sample: 155

Variable	Coefficient	Std. Error	t-Statistic Prob.
RWO	0.332164	0.061607	5.391634 0
MSCPROP_6	0.115226	0.012186	9.455734 0
С	12.92169	0.364567	35.44389 0
R-squared	0.745071	Mean dependent var	14.82217
Adjusted R-squared	0.735266	S.D. dependent var	2.460271
S.E. of regression	1.265866	Akaike info criterion	3.362391
Sum squared resid	83.32566	Schwarz criterion	3.471882
Log likelihood	-89.46576	Hannan-Quinn criter.	3.404732
F-statistic	75.98924	Durbin-Watson stat	1.860628
Prob(F-statistic)	0		

Приложение 4

Теперь попробуем исключить фактор MscProp_7 модели Вариант И3 поскольку ОН имеет высокие к-ты корреляции с другими факторами: с RealIn 3 (-52%), Emp 10(86%), UnEmp 3(-57%), ЧТО может привести мультиколлинеарности и стать причиной завышенной оценки скорректированного R2 и F-статистики

Объясняющая способность модели уменьшилась до 71%

Модель в целом значима

Фактор UnEmp_3 незначим на 10% уровне значимости

Dependent Variable: CPR
Method: Least Squares

Date: 10/05/14 Time: 17:21

Sample: 155

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RWO	0.284553	0.068657	4.144546 0.0001
REALINC_3	-0.149873	0.048889	-3.065601 0.0035
EMP_10	0.874165	0.180313	4.84803 0
UNEMP_3	-0.141537	0.211805	-0.668242 0.5071
С	14.53394	1.363	10.6632 0
R-squared	0.732276	Mean dependent var	14.82217
Adjusted R-squared	0.710858	S.D. dependent var	2.460271
S.E. of regression	1.322935	Akaike info criterion	3.48409
Sum squared resid	87.50784	Schwarz criterion	3.666575
Log likelihood	-90.81249	Hannan-Quinn criter.	3.554659
F-statistic	34.18989	Durbin-Watson stat	2.018601
Prob(F-statistic)	0		

Приложение 5

Модель значима

Объясняющая способность модели осталась на уровне 71%

У нас нет оснований не принимать объясняющие факторы

Мы получили модель для оценки CPR с другим набором факторов, нежели Вариант 4

CPR=0,28*RW0-0,15*RealInc 3+0,94*Emp 10+13,67

Method: Least Squares

Date: 10/05/14 Time: 17:22

Sample: 155

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RWO	0.278609	0.067708	4.114851 0.0001
REALINC_3	-0.152385	0.048479	-3.143338 0.0028
EMP_10	0.941142	0.149074	6.313256 0
С	13.6666	0.413789	33.02793 0
R-squared	0.729885	Mean dependent var	14.82217
Adjusted R-squared	0.713996	S.D. dependent var	2.460271
S.E. of regression	1.315737	Akaike info criterion	3.456618
Sum squared resid	88.28936	Schwarz criterion	3.602606
Log likelihood	-91.057	Hannan-Quinn criter.	3.513073
F-statistic	45.93617	Durbin-Watson stat	2.040742
Prob(F-statistic)	0		

Приложение 6

Из Варианта 1 исключаем незначимые факторы HE_2, GDP_2

Скорректированный R2 остался на уровне 75%

Модель значима

Фактор RW_2 значим на 5% уровне значимости

С – константа значима на 10% уровне значимости

Попробуем улучшить модель поочередно исключая оба объясняющих фактора!

Dependent Variable: CDR Method: Least Squares Date: 10/05/14 Time: 22:48

Sample: 128

Variable	Coefficient S	Std. Error t	-Statistic Prob.
RW_2	-0.238547	0.038797	-6.148645 0
UNEMP_2	0.471616	0.224848	2.097491 0.0462
C	0.030119	0.016871	1.785293 0.0864
R-squared	0.771521	Mean dependent var	0.043979
Adjusted R-squared	0.753243	S.D. dependent var	0.021107
S.E. of regression	0.010485	Akaike info criterion	-6.176797
Sum squared resid	0.002748	Schwarz criterion	-6.034061
Log likelihood	89.47516	Hannan-Quinn criter.	-6.133161
F-statistic	42.20964	Durbin-Watson stat	0.512205
Prob(F-statistic)	0		

Приложение 7

После исключения фактора RW_2 модель существенно утратила объясняющую способность:

Скорректированный R2 снизился с 75% до 40%

Модель значима

С –константа значима на 5% уровне значимости

Очевидно, что RW_2 был важным фактором для объяснения динамики CDR

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 22:49

Sample: 128

Variable	Coefficient S	Std. Error t	-Statistic Prob.
UNEMP_2 C	1.260595 -0.03991	0.286968 0.019344	4.392808 0.0002 -2.063211 0.0492
R-squared	0.426008	Mean dependent var	0.043979
Adjusted R-squared	0.403931	S.D. dependent var	0.021107
S.E. of regression	0.016296	Akaike info criterion	-5.327054
Sum squared resid	0.006904	Schwarz criterion	-5.231896
Log likelihood	76.57875	Hannan-Quinn criter.	-5.297963
F-statistic	19.29676	Durbin-Watson stat	0.301266
Prob(F-statistic)	0.000167		

Приложение 8

Вариант 4 показывает, что фактор RW_2 является самым важным для объяснения CDR

После исключения UnEmp_2 скорректированный R2 снизился несущественно с 75% до 72%

Модель значима

К-т при факторе RW_2 значим

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 22:49

Sample: 128

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RW_2	-0.284987	0.033877	-8.412318 0
С	0.064916	0.003261	19.90723 0
R-squared	0.731314	Mean dependent var	0.043979
•		•	
Adjusted R-squared	0.72098	S.D. dependent var	0.021107
S.E. of regression	0.011149	Akaike info criterion	-6.086125
Sum squared resid	0.003232	Schwarz criterion	-5.990968
Log likelihood	87.20575	Hannan-Quinn criter.	-6.057035
F-statistic	70.76709	Durbin-Watson stat	0.448188
Prob(F-statistic)	0		

Приложение 9

Модель значима

С- константа не значима

Объясняющая способность выбранных параметров модели 62%

Наличие положительной автокорреляции (DW=0,29) говорит о завышенных тестовых статистиках

Попробуем убрать фактор RW_11, который незначим на 1% уровне значимости

Dependent Variable: CDR Method: Least Squares Date: 10/05/14 Time: 18:04

Sample: 168

Variable	Coefficient S	Std. Error	t-Statistic Prob.
RW_11	-0.023553	0.009573	-2.46042 0.0165
UMEMP_8	0.26215	0.038873	6.743704 0
С	-0.0007	0.002919	-0.239844 0.8112
R-squared	0.630655	Mean dependent var	0.015518
Adjusted R-squared	0.619291	S.D. dependent var	0.005145
S.E. of regression	0.003174	Akaike info criterion	-8.624219
Sum squared resid	0.000655	Schwarz criterion	-8.5263
Log likelihood	296.2234	Hannan-Quinn criter.	-8.58542
F-statistic	55.49368	Durbin-Watson stat	0.297757
Prob(F-statistic)	0		

Приложение 10

После исключения фактора RW_11 объясняющая способность модели несущественно снизилась с 62% до 59%, что говорит о важности фактора UnEmp_8 для динамики CDR на промежутке январь 2009-август 2014

Модель в целом получилась значимой

С-константа значима на 2% уровне значимости

Но от положительной автокорреляции не удалось избавиться DW=0.29

Dependent Variable: CDR Method: Least Squares

Date: 10/05/14 Time: 18:05

Sample: 168

Variable	Coefficient S	Std. Error t-Statistic	Prob.
UMEMP_8	0.319301	0.032342 9.87270	6 0
С	-0.005677	0.002184 -2.59986	7 0.0115
Danisanad	0.506357	Mana daman dambana	0.015510
R-squared	0.596257	Mean dependent var	0.015518
Adjusted R-squared	0.59014	S.D. dependent var	0.005145
S.E. of regression	0.003294	Akaike info criterion	-8.564583
Sum squared resid	0.000716	Schwarz criterion	-8.499303
Log likelihood	293.1958	Hannan-Quinn criter.	-8.538717
F-statistic	97.47032	Durbin-Watson stat	0.294338
Prob(F-statistic)	0		